Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 218
Filtrar
1.
Vet Microbiol ; 294: 110105, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38729094

RESUMO

C. perfringens type D strains are the leading cause of enterotoxaemia in ruminants such as goats, sheep, and cattle. However, there has been no prior research on the genomic characteristics of C. perfringens type D strains from various regions in China. Here, we investigated the antibiotic resistance, genomic characteristics, and phylogenetic relationship of C. perfringens type D isolates recovered from goat farms in Shaanxi, Gansu, and Ningxia provinces. The antibiotic resistance test indicated that the isolates displayed high minimum inhibitory concentration (MIC) values to sulfafurazole, whereas the other antibiotics tested, such as penicillin, enrofloxacin, and florfenicol, worked well on them. Additionally, only tetracycline resistance genes [tetA(P) and tetB(P)] were identified from the isolates. A collective of 13 toxin genes, including etx and cpe were detected among the isolates. Sequence comparison revealed that the etx and cpe genes shared high sequence identities, and they could coexist on a pCW3-like plasmid, representing a potential risk to both animal breeding and public health. Phylogenetic analysis using core genome multi-locus sequence typing (cgMLST) and core genome single nucleotide polymorphisms (SNPs) revealed the close genetic relationship and potential regional/transregional transmission of the C. perfringens type D isolates in Shaanxi and Gansu provinces. Furthermore, pan-genomic analysis suggested the functional differences at the protein-coding gene level, although isolates from the same source shared a close genetic relationship. In conclusion, this study indicated the antibiotic resistance, virulence markers, potential transregional transmission, and genomic diversity of C. perfringens type D strains from various regions in China, which could provide references for the prevention of C. perfringens foodborne diseases and further research.

2.
Microbiol Res ; 285: 127747, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38739956

RESUMO

BACKGROUND: The global dissemination of the multidrug resistance efflux pump gene cluster tmexCD-toprJ has greatly weakened the effects of multiple antibiotics, including tigecycline. However, the potential origin and transmission mechanisms of the gene cluster remain unclear. METHODS: Here, we concluded a comprehensive bioinformatics analysis on integrated 73,498 bacterial genomes, including Pseudomonas spp., Klebsiella spp., Aeromonas spp., Proteus spp., and Citrobacter spp., along with 1,152 long-read metagenomic datasets to trace the origin and propagation of tmexCD-toprJ. RESULTS: Our results demonstrated that tmexCD-toprJ was predominantly found in Pseudomonas aeruginosa sourced from human hosts in Asian countries and North American countries. Phylogenetic and genomic feature analyses showed that tmexCD-toprJ was likely evolved from mexCD-oprJ of some special clones of P. aeruginosa. Furthermore, metagenomic analysis confirmed that P. aeruginosa is the only potential ancestral bacterium for tmexCD-toprJ. A putative mobile genetic structure harboring tmexCD-toprJ, int-int-hp-hp-tnfxB-tmexCD-toprJ, was the predominant genetic context of tmexCD-toprJ across various bacterial genera, suggesting that the two integrase genes play a pivotal role in the horizontal transmission of tmexCD-toprJ. CONCLUSIONS: Based on these findings, it is almost certain that the tmexCD-toprJ gene cluster was derived from P. aeruginosa and further spread to other bacteria.

3.
Sci Rep ; 14(1): 9054, 2024 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-38643223

RESUMO

The emergence of plasmid-mediated tigecycline resistance gene tet(X4) among clinically relevant bacteria has promoted significant concerns, as tigecycline is considered a last-resort drug against serious infections caused by multidrug-resistant bacteria. We herein focused on the isolation and molecular characterization of tet(X4)-positive Klebsiella pneumoniae (K. pneumoniae) and Escherichia coli (E. coli) in wild bird populations with anthropogenic interaction in Faisalabad, Pakistan. A total of 150 birds including black kites (Milvus migrans) and house crows (Corvus splendens) were screened for the presence of tigecycline resistance K. pneumoniae and E. coli. We found two K. pneumoniae and one E. coli isolate carrying tet(X4) originating from black kites. A combination of short- and long-read sequencing strategies showed that tet(X4) was located on a broad host range IncFII plasmid family in K. pneumoniae isolates whereas on an IncFII-IncFIB hybrid plasmid in E. coli. We also found an integrative and conjugative element ICEKp2 in K. pneumoniae isolate KP8336. We demonstrate the first description of tet(X4) gene in the WHO critical-priority pathogen K. pneumoniae among wild birds. The convergence of tet(X4) and virulence associated ICEKp2 in a wild bird with known anthropogenic contact should be further investigated to evaluate the potential epidemiological implications. The potential risk of global transmission of tet(X4)-positive K. pneumoniae and E. coli warrant comprehensive evaluation and emphasizes the need for effective mitigation strategies to reduce anthropogenic-driven dissemination of AMR in the environment.


Assuntos
Antibacterianos , Escherichia coli , Animais , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae , Paquistão , Farmacorresistência Bacteriana/genética , Aves/genética , Plasmídeos/genética , Genômica , Testes de Sensibilidade Microbiana
4.
Genome Med ; 16(1): 57, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627827

RESUMO

BACKGROUND: Carbapenem-resistant Escherichia coli (CREC) has been considered as WHO priority pathogens, causing a great public health concern globally. While CREC from patients has been thoroughly investigated, the prevalence and underlying risks of CREC in healthy populations have been overlooked. Systematic research on the prevalence of CREC in healthy individuals was conducted here. We aimed to characterize CREC collected from healthy populations in China between 2020 and 2022 and to compare the genomes of CREC isolates isolated from healthy individuals and clinical patients. METHODS: We present a nationwide investigation of CREC isolates among healthy populations in China, employing robust molecular and genomic analyses. Antimicrobial susceptibility testing, whole-genome sequencing, and bioinformatics were utilized to analyze a cohort of CREC isolates (n = 113) obtained from fecal samples of 5 064 healthy individuals. Representative plasmids were extracted for third-generation nanopore sequencing. We previously collected 113 non-duplicate CREC isolates (59 in 2018, 54 in 2020) collected from ICU patients in 15 provinces and municipalities in China, and these clinical isolates were used to compare with the isolates in this study. Furthermore, we employ comparative genomics approaches to elucidate molecular variations and potential correlations between clinical and non-clinical CREC isolates. RESULTS: A total of 147 CREC isolates were identified from 5 064 samples collected across 11 provinces in China. These isolates were classified into 64 known sequence types (STs), but no dominant STs were observed. In total, seven carbapenemase genes were detected with blaNDM-5 (n = 116) being the most prevalent one. Genetic environments and plasmid backbones of blaNDM were conserved in CREC isolated from healthy individuals. Furthermore, we compared clinical and healthy human-originated CRECs, revealing noteworthy distinctions in 23 resistance genes, including blaNDM-1, blaNDM-5, and blaKPC (χ2 test, p < 0.05). Clinical isolates contained more virulence factors associated with iron uptake, adhesion, and invasion than those obtained from healthy individuals. Notably, CREC isolates generally found healthy people are detected in hospitalized patients. CONCLUSIONS: Our findings underscore the significance of healthy populations-derived CRECs as a crucial reservoir of antibiotic resistance genes (ARGs). This highlights the need for ongoing monitoring of CREC isolates in healthy populations to accurately assess the potential risks posed by clinical CREC isolates.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Saúde Pública , Humanos , beta-Lactamases/genética , Escherichia coli/genética , Antibacterianos/farmacologia , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Genômica , Carbapenêmicos/farmacologia
5.
Sci Total Environ ; 923: 171560, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38458455

RESUMO

Carbapenem-resistant Klebsiella aerogenes (CRKA), being one of the members of carbapenem-resistant Enterobacteriaceae (CRE), has caused great public health concern, but with fewer studies compared to other CRE members. Furthermore, studies on phylogenetic analysis based on whole genome Single-Nucleotide Polymorphism (SNP) of CRKA were limited. Here, 20 CRKA isolates (11 blaKPC-2-bearing and 9 blaNDM-1/5-harboring) were characterized by antimicrobial susceptibility testing, conjugation assay, whole genome sequencing (WGS) and bioinformatics analysis. Additionally, the phylogeographic relationships of K. aerogenes were further investigated from public databases. All isolates were multidrug-resistant (MDR) bacteria, and they demonstrated susceptibility to colistin. Most blaKPC-2 or blaNDM-1/5-carrying plasmids were found to be conjugative. Phylogenetic analysis revealed the clonal dissemination of K. aerogenes primarily occurred within clinical settings. Notably, some strains in this study showed the potential for clonal transmission, sharing few SNPs between K. aerogenes and KPC- and/or NDM-positive K. aerogenes isolated from various countries. The STs of K. aerogenes strains had significant diversity. WGS analysis showed that the IncFIIK plasmid was the most prevalent carrier of blaKPC-2, and, blaNDM-1/5 were detected on the IncX3 plasmids. The Tn6296 and Tn3000 transposons were most common vehicles for facilitating the transmission of blaKPC-2 and blaNDM-1/5, respectively. This study highlights the importance of continuous screening and surveillance by WGS for analysis of drug-resistant strains in hospital settings, and provide clinical information that supports epidemiological and public health research on human pathogens.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter aerogenes , Humanos , beta-Lactamases/genética , Filogeografia , Filogenia , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Genômica
6.
Front Microbiol ; 15: 1353849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550871

RESUMO

Introduction: Carbapenem-resistant hypervirulent Klebsiella pneumoniae (CR-HvKP) strains combining virulence and multidrug resistance (MDR) features pose a great public health concern. The aim of this study is to explore the evolutionary characteristics of virulence in CR-HvKP by investigating the genetic features of resistance and virulence hybrid plasmids. Methods: The resistance and virulence phenotypes were determined by using antimicrobial susceptibility testing and the mouse bacteremia infection model, respectively. Plasmid profiles were investigated by S1 nuclease pulsed-field gel electrophoresis (S1-PFGE) and Southern blotting, conjugation assay, and whole genome sequencing (WGS). Bioinformatics tools were used to uncover the genetic features of the resistance and virulence hybrid plasmids. Results: Two ST11-KL64 CRKP clinical isolates (KP18-3-8 and KP18-2079), which exhibited enhanced virulence compared with the classic CRKP, were detected positive for blaKPC-2 and rmpA2. The virulence level of the hypermucoviscous strain KP18-3-8 was higher than that of KP18-2079. S1-PFGE, Southern hybridization and WGS analysis identified two novel hybrid virulence plasmids in KP18-3-8 (pKP1838-KPC-vir, 228,158 bp) and KP18-2079 (pKP1838-KPC-vir, 182,326 bp), respectively. The IncHI1B/repB-type plasmid pKP1838-KPC-vir co-harboring blaKPC-2 and virulence genes (rmpA2, iucABCD and iutA) but lacking type IV secretion system could transfer into non-hypervirulent ST11 K. pneumoniae with the assistance of a helper plasmid in conjugation. The IncFII/IncR-type virulence plasmid pKP18-2079-vir may have been generated as a result of recombination between a typical pLVPK-like virulence plasmid and an MDR plasmid. Conclusion: Our studies further highlight co-evolution of the virulence and resistance plasmids in ST11-CRKP isolates. Close surveillance of such hybrid virulence plasmids in clinical K. pneumoniae should be performed.

7.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38438143

RESUMO

Large cointegrate plasmids recruit genetic features of their parental plasmids and serve as important vectors in the spread of antibiotic resistance. They are now frequently found in clinical settings, raising the issue of how to limit their further transmission. Here, we conducted evolutionary research of a large blaNDM-positive cointegrate within Escherichia coli C600, and discovered that adaptive evolution of chromosome and plasmid jointly improved bacterial fitness, which was manifested as enhanced survival ability for in vivo and in vitro pairwise competition, biofilm formation, and gut colonization ability. From the plasmid aspect, large-scale DNA fragment loss is observed in an evolved clone. Although the evolved plasmid imposes a negligible fitness cost on host bacteria, its conjugation frequency is greatly reduced, and the deficiency of anti-SOS gene psiB is found responsible for the impaired horizontal transferability rather than the reduced fitness cost. These findings unveil an evolutionary strategy in which the plasmid horizontal transferability and fitness cost are balanced. From the chromosome perspective, all evolved clones exhibit parallel mutations in the transcriptional regulatory stringent starvation Protein A gene sspA. Through a sspA knockout mutant, transcriptome analysis, in vitro transcriptional activity assay, RT-qPCR, motility test, and scanning electron microscopy techniques, we demonstrated that the mutation in sspA reduces its transcriptional inhibitory capacity, thereby improving bacterial fitness, biofilm formation ability, and gut colonization ability by promoting bacterial flagella synthesis. These findings expand our knowledge of how cointegrate plasmids adapt to new bacterial hosts.


Assuntos
Bactérias , Escherichia coli , Escherichia coli/genética , Plasmídeos/genética , Bactérias/genética , Resistência Microbiana a Medicamentos , Cromossomos , Antibacterianos/farmacologia
8.
Phytomedicine ; 126: 155421, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430819

RESUMO

BACKGROUND: The presence of plasmid-mediated resistance-nodulation-division (RND) efflux pump gene cluster tmexCD1-toprJ1 and its related variants has been associated with heightened resistance to tigecycline, thus diminishing its effectiveness. In this study, we explored the potential of gramine, a naturally occurring indole alkaloid, as an innovative adjuvant to enhance the treatment of infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters. METHODS: The synergistic potential of gramine in combination with antibiotics against both planktonic and drug-tolerant multidrug-resistant Enterobacterales was evaluated using the checkerboard microbroth dilution technique and time-killing curve analyses. Afterwards, the proton motive force (PMF) of cell membrane, the function of efflux pump and the activity of antioxidant system were determined by fluorescence assay and RT-PCR. The intracellular accumulation of tigecycline was evaluated by HPLC-MS/MS. The respiration rate, bacterial ATP level and the NAD+/NADH ratio were investigated to reveal the metabolism state. Finally, the safety of gramine was assessed through hemolytic activity and cytotoxicity assays. Two animal infection models were used to evaluate the in vivo synergistic effect. RESULTS: Gramine significantly potentiated tigecycline and ciprofloxacin activity against tmexCD1-toprJ1 and its variants-positive pathogens. Importantly, the synergistic activity was also observed against bacteria in special physiological states such as biofilms and persister cells. The mechanism study showed that gramine possesses the capability to augment tigecycline accumulation within cells by disrupting the proton motive force (PMF) and inhibiting the efflux pump functionality. In addition, the bacterial respiration rate, intracellular ATP level and tricarboxylic acid cycle (TCA) were promoted under the treatment of gramine. Notably, gramine effectively restored tigecycline activity in multiple animal infection models infected by tmexCD1-toprJ1 positive K. pneumoniae (RGF105-1). CONCLUSION: This study provides the first evidence of gramine's therapeutic potential as a novel tigecycline adjuvant for treating infections caused by K. pneumoniae carrying tmexCD-toprJ-like gene clusters.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Tigeciclina/metabolismo , Tigeciclina/farmacologia , Tigeciclina/uso terapêutico , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Minociclina/farmacologia , Minociclina/metabolismo , Minociclina/uso terapêutico , Espectrometria de Massas em Tandem , Infecções por Klebsiella/tratamento farmacológico , Infecções por Klebsiella/microbiologia , Farmacorresistência Bacteriana , Antibacterianos/farmacologia , Alcaloides Indólicos/farmacologia , Trifosfato de Adenosina/metabolismo , Testes de Sensibilidade Microbiana
9.
Sci Total Environ ; 920: 170635, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38340846

RESUMO

Considerable attention is given to intensive care unit-acquired infections; however, research on the transmission dynamics of multichain carbapenemase-resistant Enterobacter cloacae complex (CRECC) outbreaks remains elusive. A total of 118 non-duplicated CRECC strains were isolated from the clinical, intestinal, and hospital sewage samples collected from Zhejiang province of China during 2022-2023. A total of 64 CRECC strains were isolated from the hospital sewage samples, and their prevalence increased from 10.0 % (95 % confidence interval, CI = 0.52-45.8 %) in 2022 to 63.6 % (95 % CI = 31.6-87.6 %) in 2023. Species-specific identification revealed that Enterobacter hormaechei was the predominant CRECC species isolated in this study (53.4 %, 95 % CI = 44.0-62.6 %). The antimicrobial susceptibility profiles indicated that all 118 CRECC strains conferred high-level resistance to ß-lactam antibiotics, ceftacillin/avibactam, and polymyxin. Furthermore, all CRECC strains exhibited resistance to ß-lactams, quinolones, and fosfomycin, with a higher colistin resistance rate observed in the hospital sewage samples (67.2 %, 95 % CI = 54.2-78.1 %). Several antibiotic resistance genes were identified in CRECC strains, including Class A carbapenemases (blaKPC-2) and Class B carbapenemases (blaNDM-1/blaIMP), but not Class D carbapenemases. The WGS analysis showed that the majority of the CRECC strains carried carbapenemase-encoding genes, with blaNDM-1 being the most prevalent (86.9 %, 95 % CI = 77.4-92.9 %). Furthermore, sequence typing revealed that the isolated CRECC strains belonged to diverse sequence types (STs), among which ST418 was the most prevalent blaNDM-positive strain. The high risk of carbapenemase-producing ST418 E. hormaechei and the blaNDM-harboring IncFIB-type plasmid (81.4 %, 95 % CI = 72.9-87.7 %) were detected and emphasized in this study. This study provides valuable insights into the prevalence, antimicrobial resistance, genomic characteristics, and plasmid analysis of CRECC strains in diverse populations and environments. The clonal relatedness analysis showed sporadic clonal transmission of ST418 E. hormaechei strains, supporting inter-hospital transmission.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Enterobacter cloacae , Enterobacter cloacae/genética , Carbapenêmicos/farmacologia , Esgotos , Proteínas de Bactérias/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Plasmídeos , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , China/epidemiologia , Testes de Sensibilidade Microbiana
10.
Eur J Clin Microbiol Infect Dis ; 43(3): 617-622, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38228942

RESUMO

To identify the phenotypic and genomic characteristics of K. pneumoniae KP43 from bloodstream infection. KP43 was resistant to ticarcillin and tetracycline and was hypervirulent in the Galleria mellonella larvae infection model, positive for string test, and possessed high-level macrophage killing resistance. The hypervirulence phenotype was associated with the chromosome integration of ICEKp1 carrying iroBCDN-iroP, rmpADC, and peg-344, and a novel plasmid pKP43_vir_amr harboring iutAiucABCD. pKP43_vir_amr was an IncFIBκ/FII virulence-resistance hybrid conjugative plasmid which also carried antibiotic resistance genes. The emergence of such a strain and the spread of the novel virulence-resistance plasmid might pose a potential threat to public health.


Assuntos
Infecções por Klebsiella , Klebsiella pneumoniae , Animais , Humanos , Virulência/genética , Klebsiella pneumoniae/genética , Infecções por Klebsiella/microbiologia , Plasmídeos/genética , Antibacterianos/farmacologia , Cromossomos , beta-Lactamases/genética
11.
Appl Microbiol Biotechnol ; 108(1): 132, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229329

RESUMO

Plasmids are the primary vectors for intercellular transfer of the oxazolidinone and phenicol cross-resistance gene optrA, while insertion sequences (ISs) are mobile genetic elements that can mobilize plasmid-borne optrA intracellularly. However, little is known about how the IS-mediated intracellular mobility facilitates the dissemination of the optrA gene between plasmid categories that vary in transfer abilities, including non-mobilizable, mobilizable, and conjugative plasmids. Here, we performed a holistic genomic study of 52 optrA-carrying plasmids obtained from searches guided by the Comprehensive Antibiotic Resistance Database. Among the 132 ISs identified within 10 kbp from the optrA gene in the plasmids, IS6 family genes were the most prevalent (86/132). Homologous gene arrays containing IS6 family genes were shared between different plasmids, especially between mobilizable and conjugative plasmids. All these indicated the central role of IS6 family genes in disseminating plasmid-borne optrA. Thirty-three of the 52 plasmids were harbored by Enterococcus faecalis found mainly in humans and animals. By Nanopore sequencing and inverse PCR, the potential of the enterococcal optrA to be transmitted from a mobilizable plasmid to a conjugative plasmid mediated by IS6 family genes was further confirmed in Enterococcus faecalis strains recovered from the effluents of anaerobic digestion systems for treating chicken manure. Our findings highlight the increased intercellular transfer abilities and dissemination risk of plasmid-borne optrA gene caused by IS-mediated intracellular mobility, and underscore the importance of routinely monitoring the dynamic genetic contexts of clinically important antibiotic resistance genes to effectively control this critical public health threat. KEY POINTS: • IS6 was prevalent in optrA-plasmids varying in intercellular transfer abilities. • Enterococcal optrA-plasmids were widespread among human, animal, and the environment. • IS6 elevated the dissemination risk of enterococcal optrA-plasmids.


Assuntos
Elementos de DNA Transponíveis , Genes Bacterianos , Animais , Humanos , Farmacorresistência Bacteriana/genética , Plasmídeos/genética , Antibacterianos/farmacologia , Enterococcus , Enterococcus faecalis/genética , Testes de Sensibilidade Microbiana
12.
Drug Resist Updat ; 72: 101031, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38071860

RESUMO

Carbapenem-resistant Escherichia coli (CREC) has become a major public health problem worldwide. To date, there is a limited understanding of the global distribution of CREC. In this study, we performed a comprehensive genomic analysis of 7, 731 CRECs of human origin collected from different countries worldwide between 2005 and 2023. Our results showed that these CRECs were distributed in 75 countries, mainly from the United States (17.49%), China (14.88%), and the United Kingdom (14.73%). Eight carbapenemases were identified among the CRECs analyzed, including KPC, IMP, NDM, VIM, OXA, FRI, GES, and IMI. NDM was the most predominant carbapenemase (52.15%), followed by OXA (30.09%) and KPC (14.72%). Notably, all CRECs carried multiple antibiotic resistance genes (ARGs), with 178 isolates carrying mcr-1 and 9 isolates carrying tet(X). The CREC isolates were classified into 465 known sequence types (STs), with ST167 being the most common (11.5%). Correlation analysis demonstrated the significant role of mobile genetic elements in facilitating the transfer of carbapenem resistance genes. Furthermore, some CRECs from different countries showed high genetic similarity, suggesting clonal transmission exists. According to the GWAS results, the genetic difference of blaNDM-positive CRECs from China were mainly enriched in bacterial Type IV secretion system pathways compared with those from the United Kingdom and the United States. Therefore, continuous global surveillance of CRECs is imperative in the future.


Assuntos
Proteínas de Bactérias , Enterobacteriáceas Resistentes a Carbapenêmicos , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , beta-Lactamases/genética , beta-Lactamases/metabolismo , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Escherichia coli/genética , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos/farmacologia , Carbapenêmicos/uso terapêutico , Genômica , Testes de Sensibilidade Microbiana
13.
Sci Total Environ ; 912: 168683, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37996027

RESUMO

Multidrug-resistant (MDR) bacteria in farm environments can be transferred to humans through the food chain and occupational exposure. Enterococcus infections caused by linezolid resistant enterococci (LRE) are becoming more challenging to treat as their resistance to antibiotics intensifies. Therefore, this study investigated the molecular epidemiology, phenotypic and genomic characterization of enterococci in seven species of farm animals (sheep, chicken, swine, camel, cattle, equine, pigeon) anal swab from Xinjiang, China by agar dilution method, polymerase chain reaction (PCR), whole-genome sequencing (WGS) and bioinformatics analysis. A total of 771 samples were collected, 599 (78 %) were contaminated with Enterococcus spp., among which Enterococcus faecalis (350/599) was dominant. Antimicrobial susceptibility testing showed that high resistance was observed in rifampicin (80 %), tetracycline (71 %), doxycycline (71 %), and erythromycin (69 %). The results of PCR showed the highest prevalent antibiotic resistance genes (ARGs) were aac(6')-aph(2″) (85 %), followed by tet(M) (73 %), erm(B) (62 %), and aph(3')-IIIa (61 %). Besides, 29 optrA-carrying E. faecalis isolates belonging to 13 STs (including 3 new alleles) were detected, with ST714 (31 %, 9/29) being the dominant ST type. The phylogenetic tree showed that optrA-carrying E. faecalis prevalent in the intensive swine farm is mainly caused by clonal transmission. Notably, optrA gene in Enterococcus spp. isolate from camel was first characterized here. WGS of E. faecalis F109 isolate from camel confirmed the colocalization of optrA with other five ARGs in the same plasmid (pAFL-109F). The optrA-harboring genetic context is IS1216E-fexA-optrA-erm(A)-IS1216E. This study highlights the prevalence of MDR Enterococcus (≥88 %) and four ARGs (≥75 %) in swine (intensive farming), cattle (commercial farming), and chickens (backyard farming) are high and also highlights that optrA-carrying E. faecalis of farm animals incur a transmission risk to humans through environment, food consumption and others. Therefore, antibiotic-resistant bacteria (ARB) monitoring and effective control measures should be strengthened and implemented in diverse animals.


Assuntos
Animais Domésticos , Antibacterianos , Bovinos , Animais , Cavalos/genética , Humanos , Suínos , Ovinos , Antibacterianos/farmacologia , Epidemiologia Molecular , Filogenia , Antagonistas de Receptores de Angiotensina/farmacologia , Camelus/genética , Farmacorresistência Bacteriana/genética , Galinhas/genética , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Enterococcus , Testes de Sensibilidade Microbiana , Genômica
15.
Front Microbiol ; 14: 1242369, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37744910

RESUMO

The fourth mobile sulfonamide resistance gene sul4 has been discovered in many metagenomic datasets. However, there is no reports of it in cultured bacteria. In this study, a sul4 positive clinical Salmonella enterica SC2020597 was obtained by conventional Salmonella isolation methods and characterized by species identification and antimicrobial susceptibility testing. Meanwhile, the genomic DNA was sequenced using both long-read and short-read methods. Following that, the complete genome was analyzed by bioinformatic methods. The sul4 gene in S. enterica SC2020597 differed from the sul4 identified in metagenomic data by one amino acid and could confer full resistance to sulfamethoxazole. Genetic location analysis showed that the sul4 in SC2020597 was carried by a complex chromosomally integrated hybrid plasmid. ISCR20-like was strongly associated with the mobilization of sul4 by core genetic context analysis. To the best of our knowledge, this is the first report of the emergence of sul4 in clinically cultured S. enterica. More important, the sul4 has the potential to spread to other bacteria with the help of mobile elements.

16.
Viruses ; 15(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37766372

RESUMO

Pseudorabies virus (PRV) variants were discovered in immunized pigs in Northern China and have become the dominant strains since 2011, which caused huge economic losses. In this study, a classical PRV strain was successfully isolated in a PRV gE positive swine farm. The complete genome sequence was obtained using a high-throughput sequencing method and the virus was named JS-2020. The nucleotide homology analysis and phylogenetic tree based on complete genome sequences or gC gene showed that the JS-2020 strain was relatively close to the classical Ea strain in genotype II clade. However, a large number of amino acid variations occurred in the JS-2020 strain compared with the Ea strain, including multiple immunogenic and virulence-related genes. In particular, the gE protein of JS-2020 was similar to earlier Chinese PRV strains without Aspartate insertion. However, the amino acid variations analysis based on major immunogenic and virulence-related genes showed that the JS-2020 strain was not only homologous with earlier PRV strains, but also with strains isolated in recent years. Moreover, the JS-2020 strain was identified as a recombinant between the GXGG-2016 and HLJ-2013 strains. The pathogenicity analysis proved that the PRV JS-2020 strain has typical neurogenic infections and a strong pathogenicity in mice. Together, a novel recombinant classical strain was isolated and characterized in the context of the PRV variant pandemic in China. This study provided some valuable information for the study of the evolution of PRV in China.

17.
Front Cell Infect Microbiol ; 13: 1240580, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705933

RESUMO

Salmonella is one of the most important zoonotic pathogens and a major cause of foodborne illnesses, posing a serious global public health hazard. The emergence of plasmid-mediated mcr genes in Salmonella has greatly reduced the clinical choice of salmonellosis treatment. The aim of this study was to investigate the plasmid characteristics of mcr-positive Salmonella identified from patients in Sichuan, China during 2014 to 2017 by whole genomes sequencing. In this study, a total of 12 mcr-positive isolates (1.15%, ; mcr-1, n=10; mcr-3, n=2) were identified from 1046 Salmonella isolates using PCR. Further characterization of these isolates was performed through antimicrobial susceptibility testing, conjugation assays, whole genome sequencing, and bioinformatics analysis. The mcr-1 gene in these isolates were carried by three types of typical mcr-1-bearing plasmids widely distributed in Enterobacteriaceae (IncX4, IncI2 and IncHI2). Of note, two mcr-1-harboring IncHI2 plasmids were integrated into chromosomes by insertion sequences. Two mcr-3-bearing plasmids were IncC and IncFIB broad-host-range plasmids respectively. Genetic context analysis found that mcr-1 was mainly located in Tn6330 or truncated Tn6300, and mcr-3 shared a common genetic structure tnpA-mcr-3-dgkA-ISKpn40. Overall, we found that mcr gene in clinical Salmonella were commonly carried by broad-host plasmids and have potential to transfer into other bacteria by these plasmids. Continuous surveillance of MDR Salmonella in humans and investigation the underlying transmission mechanisms of ARGs are vital to curb the current severe AMR concern.


Assuntos
Salmonella enterica , Humanos , Salmonella enterica/genética , Plasmídeos/genética , China , Enterobacteriaceae , Biologia Computacional
18.
mSystems ; 8(5): e0042923, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37707055

RESUMO

IMPORTANCE: The emergence and spread of tmexCD-toprJ have greatly weakened the function of tigecycline. Although studies have demonstrated the significance of Proteus as carriers for tmexCD-toprJ, the epidemic mechanism and characteristics of tmexCD-toprJ in Proteus remain unclear. Herein, we deciphered that the umuC gene in VRIII of SXT/R391 ICEs was a hotspot for the integration of tmexCD3-toprJ1b-bearing mobile genetic elements by genomic analysis. The mobilization and dissemination of tmexCD3-toprJ1b in Proteus were mediated by highly prevalent ICEs. Furthermore, the co-occurrence of tmexCD3-toprJ1b-bearing ICEs with other chromosomally encoded multidrug resistance gene islands warned that the chromosomes of Proteus are significant reservoirs of ARGs. Overall, our results provide significant insights for the prevention and control of tmexCD3-toprJ1b in Proteus.


Assuntos
Conjugação Genética , Elementos de DNA Transponíveis , Animais , Elementos de DNA Transponíveis/genética , Prevalência , Proteus/genética
19.
Int J Antimicrob Agents ; 62(5): 106961, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37666436

RESUMO

OBJECTIVES: The emergence of pathogens that are resistant to both tigecycline and carbapenem poses a threat to public health globally. Continuous emergence of novel tet(X) variants accelerates the tigecycline resistance crisis. This study aimed to characterise the novel tigecycline resistance gene tet(X22) and its coexistence with carbapenem resistance gene blaNDM-1 in Pseudomonas caeni. METHODS: This P. caeni isolate co-harbouring tet(X22) and blaNDM-1 was systematically investigated using antimicrobial susceptibility testing, conjugation assays, genome sequencing, bioinformatic analyses, cloning of tet(X22) and functional analysis, and protein structure prediction. RESULTS: The carbapenem-resistant and tigecycline-resistant P. caeni isolate CE14 was obtained from chicken faeces in 2022. CE14 carried multiple antibiotic resistance genes, including the novel tet(X22) and blaNDM-1. Tet(X22) exhibited 64.72-90.48% amino acid identity with other variants [Tet(X) to Tet(X21)]. Cloning of the gene tet(X22) and protein structure prediction revealed that Tet(X22) confers resistance to tetracyclines, including tigecycline. tet(X22) and blaNDM-1 were located in two multidrug-resistant regions of the chromosome. CONCLUSIONS: The occurrence of the novel ISCR2-flanked tet(X22) in P. caeni suggests that the tet(X) variant has adapted to new hosts and may widely spread to further expand the host range. The future global spread of such pathogens co-harbouring tet(X) and blaNDM variants needs to be continuously monitored according to the One Health approach.


Assuntos
Antibacterianos , Carbapenêmicos , Tigeciclina/farmacologia , Antibacterianos/farmacologia , Carbapenêmicos/farmacologia , Testes de Sensibilidade Microbiana , Plasmídeos
20.
J Glob Antimicrob Resist ; 34: 229-233, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37536658

RESUMO

OBJECTIVES: Emergence of carbapenemase and tigecycline resistance genes in pathogens threatens the efficacy of last-resort antibiotics. High attention should be paid to the spread and convergence of such resistance genes. This study reports an extensively drug-resistant (XDR) Providencia rettgeri clinical strain co-harbouring carbapenemase genes blaNDM-1, blaOXA-10 and the tmexCD3-toprJ1b gene cluster. METHODS: The phenotype and genotype of P. rettgeri Pre20-95 were investigated by antimicrobial susceptibility testing, conjugation assay, stability testing and whole genome sequencing. Bioinformatics tools were used to uncover the genetic structures of its multidrug-resistant (MDR) plasmid pPre20-95-1 and SXT/R391 integrative and conjugative element ICEPreChn20-95. RESULTS: P. rettgeri strain Pre20-95 was isolated from a human clinical infection and displayed an extensively drug-resistant (XDR) phenotype. Whole genome sequencing (WGS) analysis identified a pPrY2001-like MDR plasmid, namely pPre20-95-1, co-harbouring blaNDM-1 and blaOXA-10 genes in Pre20-95. The multidrug resistance region of pPre20-95-1 was composed of a Tn6625-derived module and a ∆Tn1696 structure, and blaNDM-1 and blaOXA-10 were located in a composite Tn structure consisting of insertion sequences ISCR1 and ISAba125 and an In125-like class 1 integron, respectively. Furthermore, the novel RND efflux pump gene cluster tmexCD3-toprJ1b was identified on the SXT/R391 ICE ICEPreChn20-95 of its chromosome, and reverse PCR showed that it could form a circular intermediate for transmission. CONCLUSION: Our findings highlight further dissemination of the tmexCD3-toprJ1b gene cluster into a clinical isolate of P. rettgeri and convergence with multiple carbapenemase genes, which increases the risk of the emergence of XDR strains and threatens the treatment of Enterobacterales bacterial infections.


Assuntos
Infecções por Enterobacteriaceae , Humanos , Infecções por Enterobacteriaceae/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA